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Undertaking the study of behaviour of an extended dyon moving in the generalized
electromagnetic field of another non-Abelian dyon in moduli space, Dirac’s equation
has been solved for energy eigenvalues and it has been shown that spin momentum of
an interacting non-Abelian dyon behaves as extra energy source. Introducing suitable
spinors, the Pauli equation for a spin-1/2 non-Abelian dyon moving in the field of another
non-Abelian dyon has been solved in moduli space and it has been shown that ad hoc
introduction of spin in the system of two non-Abelian dyons perceptibly modifies the
energy eigenvalues and eigenfunctions of bound states of the system.

1. INTRODUCTION

New interest in the subject of monopoles and dyons was enhanced by the work
of ‘t Hooft (1974) and Polyakov (1974) and its extension by Julia and Zee (1975)
and consequently these particles became intrinsic part of all current grand uni-
fied theories (Dokos and Tomaros, 1980; Preskill, 1984) with enormous potential
importance (Callen, 1982a,b; Mandelstam, 1976a,b; Rajput, 1982, 1984; Rajput
and Gunwant, 1988; Rubakov, 1981, 1982; ‘t Hooft, 1978; Witten, 1979). Keep-
ing in view the results of Witten that monopoles are necessarily dyons, we have
constructed a self-consistent and covariant quantum field theory of generalized
electromagnetic field associated with dyons each carrying the generalized charge
as complex quantity with electric and magnetic charges as its real imaginary parts
(Rajput and Bhakuni, 1982; Rajput and Joshi, 1981). We have further undertaken
the study of bound states and scattering of these particles with the help of this
formalism and showed that bound states and scattering solutions are perceptibly
modified due to the presence of magnetic charge of dyons (Pandey and Rajput,
1998, 1999; Pantet al., 1997, 1999; Purohitet al., 1999).
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Extending this work in the present paper, we have undertaken the study
of Pauli equation for non-Abelian dyons in moduli space and showed that the
interaction of spin and generalized potential leads to an extra-energy expressible
in terms of generalized spin momentum of the particle concerned. Analyzing Dirac
equation in moduli space, the study of interaction of spin and orbital angular mo-
mentum of this system has been undertaken. We have also undertaken the study
of a spin-1/2 extended dyon moving in the field of another extended dyon by in-
troducing suitable spinors and it has been demonstrated that bound state energy
eigenvalues and eigenfunctions are perceptibly modifies from those of dyons in
abelian as well as in non-Abelian gauge theories (Pandey and Rajput, 1998, 1999;
Pantet al., 1997, 1999; Purohitet al., 1999).

2. BEHAVIOUR OF NON-ABELIAN DYON IN THE FIELD OF
ANOTHER NON-ABELIAN DYON IN MODULI SPACE

Writing9(t, Ex) for a four-component spinor which also transforms under the
fundamental representation of the SU(2) isospin group, the (1+ 4)-dimensional
Dirac equation for a non-Abelian dyon in moduli space (Atiyah and Hitchin, 1988;
Manton and Schroers, 1993) in the temporal gaugeV0 = 0, may be written as

[−{00⊗ ∂t + c0µ ⊗ Dµ} +mc2]9 = 0 (2.1)

wherem is the mass of non-Abelian dyon andV0 is the temporal part of the gen-
eralized four-potential

Ã
Vµ = Va

µTa. The vector signÃ denotes the internal group
space;µ = 0, 1, 2, 3, 4, represents degrees of freedom in the external space. The
matricesTa(a = 1, 2, 3) are infinitesimal generators of the group SU(2) satisfying
[Ta, Tb] = εabcTc, which can be expressed in terms of the Pauli matricesτa via
Ta = (1/2i )τa; dyonic generalized chargeqwith electric and magnetic constituents
eandg is given by

q = e− ig (2.2)

and similarly, the generalized four-potential is given as follows in terms of electric
and magnetic four-potentialsAa

µ andBa
µ, respectively:

Va
µ = Aa

µ − i Ba
µ. (2.3)

Specifically, we consider SU(2) gauge potential
Ã
Vµ, µ = 1, 2, 3, 4 on R4 =

R3× R which are independent ofx4. We can obtain five 4× 4 complex matrices
(00, 0µ), from the standard Diracγ -matrices:

00 = γ 0, 0i = γ i , 04 = −i γ 5 = γ 0γ 1γ 2γ 3 (2.4)

9 really transforms under a spinor representation of SO(1,4) but we can think of it
as an SO(1,3) spinor by restricting to the Lorentz transformations in SO(1,3)⊂SO
(1,4) respecting the conditionx4 = 0. Dirac’s equation for non-Abelian dyon
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moving in an external field of another non-Abelian dyon in moduli space may
then be written as

[−{00⊗ ∂t + c0µ ⊗ (∂µ + |q| ÃVµ)} +mc2]9 = 0. (2.5)

Multiplying by 04, we get

[−04γ 0⊗ ∂t − c04γ i ⊗ Di − c(04)2⊗ (∂4+ |q| ÃV4)+ 04mc2]9 = 0. (2.6)

Using04= 14, D4 = φ = c(∂4+ |q|ÃV4) and using Eq. (2.4), we get from Eq. (2.6);[
−
[

12 0

0 −12

]
⊗ ∂t − c

[
0 σi

−σi 0

]
⊗ Di −

[
12 0

0 12

]
⊗ φ

+
[

12 0

0 12

]
mc2

]
9 = 0

or

i h
∂

∂t

[
12 0

0 −12

]
9 =

[
−c

[
0 σi ⊗ Di

−σi ⊗ Di 0

]
−
[

12⊗ φ 0

0 12⊗ φ

]

+
[

12 0

0 12

]
mc2

]
9. (2.7)

The relativistic energy of the particle includes also its rest energymc2. This must be
excluded in arriving at the nonrelativistic approximation, and we therefore replace
9 by a function9 ′ defined as follows:

9 = 9 ′e−imc2t/h.

Then from Eq. (2.7), we have

[i h(∂/∂t)+mc2]

[
12 0

0 −12

]
9 ′ =

[
−c

[
0 σi ⊗ Di

−σi ⊗ Di 0

]

−
[

12⊗ φ 0

0 12⊗ φ

]
+
[

12 0

0 12

]
mc2

]
9 ′.

Substituting9 ′ = [ξη], whereξ andη are two-component functions. We obtain[
[i h(∂/∂t)+mc2]ξ

[−{i h(∂/∂t)+mc2}]η

]
=
[−cσi ⊗ Di η

cσi ⊗ Di ξ

]
+
[−12⊗ φ ξ
−12⊗ φ η

]
+
[

mc2 ξ

mc2 η

]
.

(2.8)
From Eq. (2.8), we get

[i h(∂/∂t) + 12⊗ φ]ξ = −cσi ⊗ (∂i + |q| ÃVi )η (2.9)
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−[i h(∂/∂t) − 12⊗ φ + 2mc2]η = cσi ⊗ (∂i + |q| ÃVi )ξ. (2.10)

In the first approximation, only the term 2mc2η is retained on the left hand side of
(2.10), which gives

η = − 1

2mc
σi ⊗ (∂i + |q| ÃVi )ξ. (2.11)

Substitution of (2.11) in (2.9), we get

i h
∂ξ

∂t
=
[

1

2m
( EPi + |q| ÃVi )

2− 12⊗ φ − |q|h
2m

σi ⊗ curl
Ã
Vi

]
ξ = Hξ (2.12)

where∂i = EPi , is the momentum of non-Abelian dyon.
This is Pauli’s equation for non-Abelian dyons in moduli space. It has the

following extra spin contribution in the energy gained by spin-1/2 non-Abelian
dyon while moving in the field of another non-Abelian dyon:

E′ = −|q|h
2m

(σi ⊗ curl
Ã
Vi ). (2.13)

This equation can also be written as

E′ = −µD ⊗ curl
Ã
Vi = −µD′ (σi ⊗ curl

Ã
Vi ) (2.14)

where

µD′ = |q|h
2m

(2.15)

is defined as the Dyoneton for the system and

µD = µD′σi (2.16)

as generalized spin moment of non-Abelian dyon. Consequently, extraenergy term
in the Hamiltonian, may be interpreted as the energy of interaction of the gener-
alized spin moment of non-Abelian dyon with a vector field, resulting from the
space rotation of generalized four-potential. The third component of generalized
spin moment operator for non-Abelian dyon may be written as

(µD)3 = |q|h
2m

σ3, (2.17)

the eigenvalue of which is

±|q|h
2m
= ±µD′ . (2.18)

3. SPIN–ORBIT INTERACTION

Let us consider the motion of a spin-1/2 non-Abelian dyon in the generalized
electromagnetic field of another non-Abelian dyon retaining terms up to those of
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orderv2/c2. Substituting
Ã
Vi = 0 andE = i h(∂/∂t) in Eqs. (2.9) and (2.10), we

find

(E + 12⊗ φ)ξ = −cσi ⊗ EPi η (3.1)

−(E − 12⊗ φ + 2mc2)η = cσi ⊗ EPi ξ. (3.2)

We calculate from (3.2) the functionη up to terms of first order in (E − l2⊗
φ)/2mc2. Substituting the value

η = − 1

2mc

[
1− E − 12⊗ φ

2mc2

]
(σi ⊗ EPi ) ξ

into Eq. (3.1), we find an equation containing only one two-component function

(E + 12⊗ φ)ξ = 1

2m
(σi ⊗ EPi )

[
1− E − 12⊗ φ

2mc2

]
(σi ⊗ EPi ) ξ (3.3)

which on simplification gives the following expression for energy operator
(Hamiltonian) in the first approximation:

H = 1

2m

[
1− E − 12⊗ φ

2mc2

]
EP 2

i − 12⊗ φ − [i h/4m2c2][ E∇(12⊗ φ)⊗ EPi ]

+ [h/4m2c2][σi ⊗ { E∇(12⊗ φ)× EPi ]. (3.4)

In order to derive expression for Hamiltonian, in second approximation we use
instead ofξ another functionχ , given by

χ = ûξ

the normalization of which up to second order leads to the following value of
factoru:

û ≈ 1− [ EP2
i /8m2c2

]
.

Using this value of̂u (and hence ofχ ), we get the following relativistic expression
for corresponding Hamiltonian, up to terms of orderv2/c2:

Ĥ = [1+ ( EP2
i /8m2c2

)]
Ĥ
[
1− ( EP2

i /8m2c2
)]

= [( EP2
i /2m

)− 12⊗ φ
]+ [(h2/8m2c2) E∇2(12⊗ φ)] − [(E − 12⊗ φ)2/2mc2]

+ [(h/4m2c2)[σi ⊗ { E∇(12⊗ φ)× EPi }]]
= Ĥ0+ Ĥ1+ Ĥ2+ Ĥ3

= Ĥ0+ Ĥ1 (3.5)

whereĤ0 corresponds to the nonrelativistic term of the Hamiltonian, whereasĤ1

is the relativistic correction term to the Hamiltonian various parts of which arise
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due to different relativistic interaction. The quantityĤ1 is called contact interaction
operator, analogous to the term introduced by Darwin (1928) for electronic case.
Ĥ2 is the relativistic correction term due to the dependence of kinetic energy on
momentum. Finally,

Ĥ3 = h[σi ⊗ { E∇(l2⊗ φ)×EPi }]
4m2c2

(3.6)

is the so-called spin orbit interaction operator.
In a spherically symmetric field

E∇φ = Er
r

dφ

dr
.

Substituting this expression into (3.6) we find the spin–orbit interaction operator
for the motion of a spin-1/2 particle in a spherically symmetric field:

Ĥ3 = d

dr
(12⊗ φ)

Ŝ⊗ L̂

2m2c2r
(3.7)

where L̂ = Er × EPi is the orbital angular momentum operator andŜ= 1/2hσi is
the spin angular momentum operator. This expression clearly demonstrates that
besides the contribution of Higgs field, the interaction of spin and orbital angular
momenta of moving non-Abelian dyon also contributes to the energy operator.

4. PAULI EQUATION FOR A NON-ABELIAN DYON IN THE FIELD
OF ANOTHER NON-ABELIAN DYON IN MODULI SPACE

For analyzing the motion of spin-1/2 non-Abelian dyon in the field of another
non-Abelian dyon with the inclusion of spin effect, let us start with the following
Schrodinger equation forith dyon moving in the field ofjth dyon in non-Abelian
gauge form in moduli space, may be written as[

− 1

2m
∇̂2+ 14⊗ φ(r )+ F(r )L̂ ⊗ σi

][
91

92

]
= E

[
91

92

]
(4.1)

where∇̂ is ( EP + |q| ÃV), φ(r ) is the Higgs potential; through a specific kind of
gauge transformation which sends the operatorr̂ · ET to an operatorET3 gives the
following form of Higgs potential:

φ(r ) = −αi j

r
+ µ2

i j

2mr2
(4.2)

whereαi j is electric coupling parameter andµi j is the magnetic coupling param-
eter. And spin–orbit interactionF(r )L̂ ⊗ σi will be treated as small perturbation.
Though the nonrelativistic Pauli equation (4.1) is not sufficiently complex to yield
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precise values for fine structure of dyonium energy level, it can be safely taken as
a useful guide to an understanding the role of spin in bound states of two dyons,
i.e. dyonium.

The unperturbed Hamiltonian

Ĥ0 = (−1/2m)∇̂2+ 14⊗ φ(r ), (4.3)

represents a central force problem for dyonium and the spin–orbit interaction
energyĤ

′
is given by

Ĥ
′ = αi j

2m2c2

〈
1

r 3

〉
12⊗ Ŝ⊗ L̂ − µ2

i j

2m3c2

〈
1

r 4

〉
12⊗ Ŝ⊗ L̂ (4.4)

where the symbols have their usual meaning. To simplify the above equation, we
introduce the total angular momentum as

Ĵ ⊗ Ĵ = L̂ ⊗ L̂ + Ŝ⊗ Ŝ+ 2 L̂ ⊗ Ŝ.

So the Pauli operator for̂H
′
is given by

(Ĥ
′
)P = αi j

4m2c2

〈
1

r 3

〉
12⊗ [( Ĵ ⊗ Ĵ)P − (L̂ ⊗ L̂)P − (Ŝ⊗ Ŝ)P]

− µ2
i j

4m3c2

〈
1

r 4

〉
12⊗ [( Ĵ ⊗ Ĵ)P − (L̂ ⊗ L̂)P − (Ŝ⊗ Ŝ)P]. (4.5)

Thus, the Pauli wave equation becomes

(Ĥ )P9P = [( Ĥ0)P + (Ĥ
′
)P]9P = W9P , (4.6)

where

(Ĥ0)p =
[

Ĥ0 0

0 Ĥ0

]
P

=
[−(1/2m)∇̂2− αi j 14/r + µ2

i j 14/2mr2 0

0 − (1/2m)∇̂2− αi j 14/r + µ2
i j 14/2mr2

]
(4.7)

and

9P =
[
9+

9−

]
P

(4.8)

represents the Pauli wave function. The Pauli wave equation for unperturbed
Hamiltonian is given as[

Ĥ0 0

0 Ĥ0

][
9+(0)

9−(0)

]
= W(0)

[
9+(0)

9−(0)

]
(4.9)

or

Ĥ09±(0)= W(0)9±(0). (4.10)
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This wave equation is solved by introducing the total angular momentum operator
as vector sum of the orbital angular momentum in the gauge field, isotopic spin,
and spin

EJ = EL + ES,

EL = EM + ( ET · r̂ )r,

EM = Er ×
[

P − Er ×
ET

r

]
, (4.11)

which satisfy the following eigenvalue equations for the angular momentum eigen-
function: 

J2

L2

J3

T2

Yµi j ,l ,m(θ , φ) =


j ( j + 1)

l (l + 1)

mj

t(t + 1)

Yµi j ,l ,m(θ , φ), (4.12)

whereYµi j ,l ,m(θ , φ) are the dyon harmonics (Pandeyet al., 1990) and the radial
function [U (r )/r ] = R(r ) satisfy the equation

9 = U (r )

r
Yµi j ,l ,m(θ , φ). (4.13)

We get the following radial equation after separation of variables by substituting
Eq. (4.13) into Eq. (4.10),

r 2

{
1

r R(r )

d2

dr2
(r R)+ 2m(E − 14⊗ φ)

}
= −3Yµi j ,l ,m(θ , φ)

Yµi j ,l ,m(θ , φ)
= l (l + 1) (4.14)

with

3 = 1

sinθ

∂

∂θ

[
sinθ

∂

∂θ

]
+ 1

sin2 θ

∂2

∂φ2
(4.15)

and

φ = −Re(qi q∗j )

r
+ [Im(qi q∗j )]

2

2mr2
. (4.16)

Substituting the value ofφ from (4.16) into (4.14), we get

1

r 2

d

dr

[
r 2 d R

dr

]
+ 2m

[
E + Re(qi q∗j )14

r
− [Im(qi q∗j )]

214

2mr2
− l (l + 1)

2mr2

]
R(r ) = 0.

(4.16a)
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Substituting dimensionless variableρ = αr this equation becomes

1

ρ2

d

dρ

[
ρ2 d R

dρ

]
+
[

2mE

α2
+ 2mRe(qi q∗j )14

αρ

− l (l + 1)− [Im(qi q∗j )]
214

2mα2ρ2

]
R(ρ) = 0, (4.16b)

whereα2 = 8m|E| = −8mE.
Equation (4.16b) may also be written as

1

ρ2

d

dρ

[
ρ2 d R

dρ

]
+
[
λ

ρ
− 1

4
− S(S+ 1)

ρ2

]
R(ρ) = 0, (4.17)

where

S(S+ 1)= 2ml(l + 1)− [Im(qi q∗j )]
214
√

(m/− 2E)

2m
(4.18)

and

λ = Re(qi q
∗
j )14
√

(m/− 2E).

Equation (4.17) yields the following energy eigenvalue for the system of an ex-
tended dyon spinning around another non-Abelian dyon:

En = −2m[Re(qi q
∗
j )]

214[(2n+ 1)+ {(21+ 1)2+ (Im(qi q
∗
j )/m)214}1/2]−2,

(4.19)
wheren = 0, 1, 2,. . . and9±(0) are dyonium wave functions simplified toRnl(r )
Yµi j ,l ,m(θ , φ), whereYµi j ,l ,m(θ , φ) are dyon harmonics (Pandeyet al., 1990). Thus,
the Pauli wave function for spin up and spin down states are given by

[9+(0)]P = 9(n, l , ml, ms=+1/2) = RnlYµi j ,m,l | ↑〉 =
[

RnlYµi j ,m,l

0

]
(4.20)

and

[9−(0)]p = 9(n,l ,ml,ms=−1/2) = RnlYµi j ,m,l | ↓〉 =
[

0

RnlYµi j ,l ,m

]
. (4.21)

In the absence of spin–orbit interaction, both the wave functions corresponds to
the same energy. In order to determine the splitting due to spin–orbit interaction
we should choose a representation in whichH ′ is diagonal:

(φ1)P = φ(n, l , j = l+1/2, mj)
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or

(φ1)p =
√

l +mj + 1/2

2l + 1
9(n, l , ml=mj− 1/2,ms=+1/2)

+
√

l −mj + 1/2

2l + 1
9(n, l , ml=mj+ 1/2, ms=−1/2)

=


√

l +mj + 1/2

2l + 1
RnlYµi j ,l ,mj− 1/2√

l −mj + 1/2

2l + 1
RnlYµi j ,l ,mj+ 1/2

 (4.22)

Similarly, we can write (φ2)p = φ(n,l , j=1−1/2,mj).
Then the first order perturbation due to the spin–orbit interaction would be

given by

W(1)
s =

∫
dτφ†(H ′)Pφ

= (Re(qi q
∗
j )/4m2c2)

∫
dτ (1/r 3)φ†12⊗ [( Ĵ ⊗ Ĵ)P − (L̂ ⊗ L̂)P

− (Ŝ⊗ Ŝ)P]φ − (Im(qi q
∗
j )

2/4m3c2)

×
∫

dτ (1/r 4)φ†12⊗ [( Ĵ ⊗ Ĵ)P − (L̂ ⊗ L̂)P − (Ŝ⊗ Ŝ)P]φ (4.23)

or

W(1)
s = (Re(qi q

∗
j )/4m2c2)[12⊗ { j ( j + 1)− l (l + 1)− 3/4}]

×
∫

dτ (1/r 3)[{(l ±mj + 1/2)/(2l + 1)}|Rnl |2|Yµi j ,l ,mj− 1/2|2

+{(l ∓mj + 1/2)/(2l + 1)}|Rnl |2|Yµi j ,l ,mj+ 1/2|2]

+ (Im(qi q
∗
j )

2/4m3c2)[12⊗ { j ( j + 1)− l (l + 1)− 3/4}]

×
∫

dτ (1/r 4)[{(l ±mj + 1/2)/(2l + 1)}|Rnl |2|Yµi j ,l ,mj− 1/2|2

+{(l ∓mj + 1/2)/(2l + 1)}|Rnl |2|Yµi j ,l ,mj+ 1/2|2], (4.24)

where the upper and lower signs corresponds toj = l + 1/2 and j = l − 1/2,
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respectively. After integration we get

W(1)
s =



Re (qi q∗j )

4m2c2
12⊗ l

〈
1

r 3

〉
+ Im (qi q∗j )

2

4m3c2
12⊗ l

〈
1

r 4

〉
for j = l + 1

2
,

−Re (qi q∗j )

4m2c2
12⊗ (l + 1)

〈
1

r 3

〉
+ Im (qi q∗j )

2

4m3c2
12⊗ (l + 1)

〈
1

r 4

〉
for j = l − 1

2
,

(4.25)

where 〈
1

r 3

〉
=
∫ ∞

0

1

r 3
|Rnl |2 r 2 dr = 1

n3l (l + 1/2)(l + 1)

1

a2
0

,

〈
1

r 4

〉
=
∫ ∞

0

1

r 4
|Rnl |2 r 2 dr = 3− 5n3(l + 1/2)a2

0

n5(l − 1/2)(l + 1/2)(l + 3/2)a4
0

. (4.26)

The splitting of energy levels corresponding to quantum numbern is W =
W(0)+W(1)

s

W =



En −
En Re(qi q∗j )12⊗ l

2m2c2n3l (l + 1)(2l + 1)a2
0

− En Im(qi q∗j )
212⊗ l [3− 5n3(l + 1/2)a2

0]

m4c2n5(2l − 1)(2l + 1)(2l + 3)a4
0

for j = l + 1

2
,

En +
En Re(qi q∗j )12⊗ (l + 1)

2m2c2n3l (l + 1)(2l + 1)a2
0

− En Im(qi q∗j )
212⊗ (l + 1)[3− 5n3(l + 1/2)a2

0]

m4c2n5(2l − 1)(2l + 1)(2l + 3)a4
0

for j = l − 1

2

(4.27)

whereEn is given by Eq. (4.19) and the Bohr radiusa0 for this system is given as

a0 =
[Im(qi q∗j )]

2+ 1

mRe(qi q∗j )
. (4.28)

Equation (4.27) gives the splitting in the energy levels corresponding to quantum
numbern for j = l + 1/2 and j = l − 1/2, respectively.
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5. CONCLUSION

Equation (2.5) is Dirac’s equation for extended dyon moving in general-
ized electromagnetic field of another non-Abelian dyon in moduli space, which
on solving gives Pauli’s equation (2.12) for non-Abelian dyons. Equation (3.5) is
the relativistic Hamiltonian, for non-Abelian dyon in field of another non-
Abelian dyon in moduli space, different parts of which arise due to different
relativistic interactions. Hamiltonian (3.5) of this system has been shown in
terms of Higgs potential instead of scalar potential in abelian as well as in non-
Abelian gauge theories (Rajput and Pandey, 1998) due to moduli space approx-
imation. Equation (4.1) is the Schrodinger equation for a spinning non-Abelian
dyon in the field of another non-Abelian dyon in moduli space, in this equa-
tion spin has been introduced in an ad hoc manner. Equation (4.19) described
the energy eigenvalue of this system and Eq. (4.20) and (4.21) describe the
Pauli wave function associated with spinning non-Abelian dyons in moduli
space. Equation (4.27) is the splitting of energy levels corresponding to quan-
tum numbern and Eq. (4.28) is Bohr radius for non-Abelian dyonium in moduli
space.
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