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Pauli Equation for Non-Abelian Dyons
in Moduli Space
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Undertaking the study of behaviour of an extended dyon moving in the generalized
electromagnetic field of another non-Abelian dyon in moduli space, Dirac’s equation
has been solved for energy eigenvalues and it has been shown that spin momentum of
an interacting non-Abelian dyon behaves as extra energy source. Introducing suitable
spinors, the Pauli equation for a spin-1/2 non-Abelian dyon moving in the field of another
non-Abelian dyon has been solved in moduli space and it has been shown that ad hoc
introduction of spin in the system of two non-Abelian dyons perceptibly modifies the
energy eigenvalues and eigenfunctions of bound states of the system.

1. INTRODUCTION

New interest in the subject of monopoles and dyons was enhanced by the work
of ‘t Hooft (1974) and Polyakov (1974) and its extension by Julia and Zee (1975)
and consequently these particles became intrinsic part of all current grand uni-
fied theories (Dokos and Tomaros, 1980; Preskill, 1984) with enormous potential
importance (Callen, 1982a,b; Mandelstam, 1976a,b; Rajput, 1982, 1984; Rajput
and Gunwant, 1988; Rubakov, 1981, 1982; ‘t Hooft, 1978; Witten, 1979). Keep-
ing in view the results of Witten that monopoles are necessarily dyons, we have
constructed a self-consistent and covariant quantum field theory of generalized
electromagnetic field associated with dyons each carrying the generalized charge
as complex quantity with electric and magnetic charges as its real imaginary parts
(Rajput and Bhakuni, 1982; Rajput and Joshi, 1981). We have further undertaken
the study of bound states and scattering of these particles with the help of this
formalism and showed that bound states and scattering solutions are perceptibly
modified due to the presence of magnetic charge of dyons (Pandey and Rajput,
1998, 1999; Parst al,, 1997, 1999; Purohit al,, 1999).
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Extending this work in the present paper, we have undertaken the study
of Pauli equation for non-Abelian dyons in moduli space and showed that the
interaction of spin and generalized potential leads to an extra-energy expressible
in terms of generalized spin momentum of the particle concerned. Analyzing Dirac
equation in moduli space, the study of interaction of spin and orbital angular mo-
mentum of this system has been undertaken. We have also undertaken the study
of a spin-1/2 extended dyon moving in the field of another extended dyon by in-
troducing suitable spinors and it has been demonstrated that bound state energy
eigenvalues and eigenfunctions are perceptibly modifies from those of dyons in
abelian as well as in non-Abelian gauge theories (Pandey and Rajput, 1998, 1999;
Pantet al, 1997, 1999; Purohit al., 1999).

2. BEHAVIOUR OF NON-ABELIAN DYON IN THE FIELD OF
ANOTHER NON-ABELIAN DYON IN MODULI SPACE

Writing W(t, X) for a four-component spinor which also transforms under the
fundamental representation of the SU(2) isospin group, the 4J-dimensional
Dirac equation for a non-Abelian dyon in moduli space (Atiyah and Hitchin, 1988;
Manton and Schroers, 1993) in the temporal gage- 0, may be written as

[-{MP®& +crM*®D,}+mE¥ =0 (2.1)

wherem s the mass of non-Abelian dyon ah{ is the temporal part of the gen-
eralized four-potentiaV,, = V2Ta. The vector sign- denotes the internal group
spaceu =0, 1, 2, 3, 4, represents degrees of freedom in the external space. The
matricesT,(a = 1, 2, 3) are infinitesimal generators of the group SU(2) satisfying
[Ta, To] = €ancTe, Which can be expressed in terms of the Pauli matrigega

Ta = (1/2i)7,; dyonic generalized charggvith electric and magnetic constituents
eandgis given by

g=e—ig (2.2)
and similarly, the generalized four-potential is given as follows in terms of electric
and magnetic four-potentials’, andBf, respectively:
V2 =A —iBS. (2.3)

Specifically, we consider SU(2) gauge potentiﬁlﬂ,u =1,2,3,4 onR* =
R3 x Rwhich are independent of,. We can obtain five 4 4 complex matrices
(r°, r'#), from the standard Dirag-matrices:

M=% =y, IM=-iy’=y%%?%?3 (2.4)
v really transforms under a spinor representation of SO(1,4) but we can think of it

as an SO(1,3) spinor by restricting to the Lorentz transformations in SQ{1S8)
(1,4) respecting the conditior, = 0. Dirac’s equation for non-Abelian dyon
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moving in an external field of another non-Abelian dyon in moduli space may
then be written as

[’ ® & + el ® (3, + 19| V,.)} + mE]¥ = 0. (2.5)
Multiplying by I'#, we get
[-T%0® 8 — eIy @ D — c(I')? @ (84 + |q| Va) + I*mE|w = 0. (2.6)
Usingl'™ =14, D4 = ¢ = c(94 + |q|V4) and using Eq. (2.4), we get from Eq. (2.6);

- ®0d —C ® D — ® ¢
0 -1, -0 0 0 L
L O
+[2 }m@}\vzo
0 1
or

[l O 0 oi ® D Lee O
h— v=|-c -
o -1, —0i ® D 0 0 Loy¢

1, 0
v [ 02 } mc2:| . 2.7)

L

The relativistic energy of the particle includes also its rest en@rgfy This must be
excluded in arriving at the nonrelativistic approximation, and we therefore replace
W by a function¥’ defined as follows:

W — lp/efimcz’[/h.

Then from Eg. (2.7), we have

ih(a/ot & L0 v 0 oD
ne/og+mell o AV =17 web o
5 el Lo 2)m]
- + mc | v’
0 L®¢ 0 1L
Substitutingd’ = [5], where¢ andn are two-component functions. We obtain
lih(a/at) + mcg —Coi ® Din “Lees mc* &
_ = + + :
[—{ih(3/3t) + mS}In coi ® Di§ -1, ®¢n mc n
(2.8)
From Eq. (2.8), we get
[ih(3/8t) + 1, ® $]§ = —coi ® (3 + [al Vidn (2.9)
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—[ih(d/0t) — 1, ® ¢ + 2m]y = coi ® (8 + |q| Vi ). (2.10)

In the first approximation, only the ternm?y is retained on the left hand side of
(2.10), which gives

1 .
1= "5m ® (& + (9] Vi)é. (2.11)
Substitution of (2.11) in (2.9), we get
08 [l o i N2 lalh ale
ihet = [%(P. AV - L®¢ - S0 ® curlv.]é =H¢ (212)

whereg;, = I5i, is the momentum of non-Abelian dyon.

This is Pauli's equation for non-Abelian dyons in moduli space. It has the
following extra spin contribution in the energy gained by spin-1/2 non-Abelian
dyon while moving in the field of another non-Abelian dyon:

7 | |h 7
E = —g—m(ai ® curlVi). (2.13)
This equation can also be written as
E' = —up ® curlV, = —up(o; ® curlVi) (2.14)
where
lalh
f = — 2.15
no =5 (2.15)
is defined as the Dyoneton for the system and
UD = KO (2.16)

as generalized spin moment of non-Abelian dyon. Consequently, extraenergy term
in the Hamiltonian, may be interpreted as the energy of interaction of the gener-
alized spin moment of non-Abelian dyon with a vector field, resulting from the
space rotation of generalized four-potential. The third component of generalized
spin moment operator for non-Abelian dyon may be written as

h
(kD)3 = —|gr|n 03, (2.17)
the eigenvalue of which is
lqlh
+—— =+tup. 2.18
2m HD ( )

3. SPIN-ORBIT INTERACTION

Let us consider the motion of a spin-1/2 non-Abelian dyon in the generalized
electromagnetic field of another non-Abelian dyon retaining terms up to those of
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orderv2/c?. Substitutingy; = 0 andE = i h(3/dt) in Egs. (2.9) and (2.10), we
find

(E+1,®¢)E = —Coi ® Pin (3.1)
—(E-1L®¢+2mA)y = coi ® Pj&. (3.2)

We calculate from (3.2) the functiom up to terms of first order inE — I, ®
$)/2mc. Substituting the value

1 E-L®¢ .
- |1-— ' P;
d 2mc[ 2me ](U' ©P)E
into Eq. (3.1), we find an equation containing only one two-component function
E-L®¢

(E+b®ms=§#m®ﬁ{1— }m®ﬁos (3.3)

2mc?

which on simplification gives the following expression for energy operator
(Hamiltonian) in the first approximation:

_ 1 1_w
T 2m 2mea

+[h/4m?c[oi ® (V(1, ® ¢) x Pil. (3.4)

In order to derive expression for Hamiltonian, in second approximation we use
instead of another functiory, given by

H B~ 109 - [ih/4m’?[V(1, ® ¢) ® Pi]

x = 0&

the normalization of which up to second order leads to the following value of
factoru:

I~1- [I5i2/8m202].

Using this value ofi (and hence of), we get the following relativistic expression
for corresponding Hamiltonian, up to terms of orgéyc?:

H = [1+ (B/8m?c?)|H[1— (B} /8m?c?)]
= [(B{/2m) — 1, ® ¢] + [("*/8MPC2)V2(L, @ $)] — [(E — 1> @ $)°/2m]
+[(h/4m*cA)o; ® (V(1, ® ¢) x Pi}]
= |:|0+ |:|1+ |:|2+ Hg
= HAo + HAl (3.5)

whereH, corresponds to the nonrelativistic term of the Hamiltonian, whereas
is the relativistic correction term to the Hamiltonian various parts of which arise
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due to different relativistic interaction. The quantidy is called contactinteraction
operator, analogous to the term introduced by Darwin (1928) for electronic case.
H. is the relativistic correction term due to the dependence of kinetic energy on
momentum. Finally,

+ hloi ® (V(2® ¢) xPi)]
Has = 4m2¢c?

is the so-called spin orbit interaction operator.
In a spherically symmetric field

(3.6)

Substituting this expression into (3.6) we find the spin—orbit interaction operator
for the motion of a spin-1/2 particle in a spherically symmetric field:

S®L

3.7
dwen o (37)
wherel =T x I3i is the orbital angular momentum operator de- 1,hoi is

the spin angular momentum operator. This expression clearly demonstrates that
besides the contribution of Higgs field, the interaction of spin and orbital angular

momenta of moving non-Abelian dyon also contributes to the energy operator.

4. PAULI EQUATION FOR A NON-ABELIAN DYON IN THE FIELD
OF ANOTHER NON-ABELIAN DYON IN MODULI SPACE

For analyzing the motion of spin-1/2 non-Abelian dyon in the field of another
non-Abelian dyon with the inclusion of spin effect, let us start with the following
Schrodinger equation fath dyon moving in the field ofth dyon in non-Abelian
gauge form in moduli space, may be written as

[ L9 1,060+ FO)L @ ] g™ (4.1)
- Oj = .
2m v, v,

whereV is (P + |q| V), ¢(r) is the Higgs potential; through a specific kind of
gauge transformation which sends the operétof to an operatoils gives the
following form of Higgs potential:
2
ajj Mij
ry=——

o) r + 2mr2
whereq;; is electric coupling parameter apg} is the magnetic coupling param-
eter. And spin—orbit interactio (r )L ® o; will be treated as small perturbation.
Though the nonrelativistic Pauli equation (4.1) is not sufficiently complex to yield

(4.2)
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precise values for fine structure of dyonium energy level, it can be safely taken as
a useful guide to an understanding the role of spin in bound states of two dyons,
i.e. dyonium.

The unperturbed Hamiltonian

Ho = (=1/2m)V? + 1, ® 4(r), (4.3)

represents a central force problem for dyonium and the spin—orbit interaction
enerng/ is given by

ﬁ’—iilc;é@t—“—ﬁil@éept (4.4)
~ 2mec2\r3) 2m3c2\r4/ ? '
where the symbols have their usual meaning. To simplify the above equation, we
introduce the total angular momentum as
Jei=LeL+S®S+2L®S
So the Pauli operator fad is given by

(e = | 73) 12013 © Do = (L & Do - (S 9]
o ra) 128 3@ e - C @ D)e ~ (30 921, 49
Thus, the Pauli wave equation becomes
(H)pw, = [(Ho)p + (H')plup = Way, (4.6)
where

) Ho O —(1/2m)V2 — oy La/1 + p? 1a/2mr2 0
(Ho)p = =

0 Hol, 0 —(1/2m)V2 — i La/r + uf 1s/2mr?
4.7)
and
v
wpz[ *} (4.8)
v P

represents the Pauli wave function. The Pauli wave equation for unperturbed
Hamiltonian is given as

[Ho ?MM(O)}:W(O)[%(O)} 4.9)
0 Hol|w (0 v_(0)

How(0) = W(0)y(0). (4.10)

or
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This wave equation is solved by introducing the total angular momentum operator
as vector sum of the orbital angular momentum in the gauge field, isotopic spin,
and spin

T
Mzrx[p_” ] (4.11)

which satisfy the following eigenvalue equations for the angular momentum eigen-
function:

J? iGg+1

L? I+ 1)

3 Yij 1m0, @) = o Yij 1,m(@, @), (4.12)
3 j

T? tt+1)

whereY,ij .m0, ¢) are the dyon harmonics (Pandetal., 1990) and the radial
function U (r)/r] = R(r) satisfy the equation

U= @ i l.m(0, @). (4.13)

We get the following radial equation after separation of variables by substituting
Eq. (4.13) into Eq. (4.10),

o[ 1 d? _ AYijim©@,8)
: {—rR(r)W(rR)+Zm(E—14®¢)} = -t <10-+1) (814)
with
ar . 9 1 92
= m%[s'”%] + 570 992 (#4.15)
and
- - *)12
5 _Rea) | ImGa? “15)

r 2mr2
Substituting the value af from (4.16) into (4.14), we get

1d [rzd R} n Zm[E N Re@a))ls  [Im(Gig)l*Ls 10 +1)

r2dr 2mr2 2mr2

dr

} R(r) =0.
(4.16a)
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Substituting dimensionless varialle= ar this equation becomes

1d[ ,dR 2mE 2mRe@ d})1s
p2dp p dp a? ap

I(1 + 1) — [Im(c; 91)]*14
B 2ma2p?

]R(p) =0, (4.16b)

wherea? = 8m|E| = —8mE.
Equation (4.16b) may also be written as

1d[ ,dR A1 SS+1) _
e Ll R P B L OECC
where
— - 0*)12 _
S(S+1)=2m|(l+1) [lm(qz.:;)] 14y/(m/ — 2E) (4.18)
and

» = Re(q))Lay/(m/ - 2E).

Equation (4.17) yields the following energy eigenvalue for the system of an ex-
tended dyon spinning around another non-Abelian dyon:

En = —2m[Re(q 9))]1*1a[(2n + 1) + {(21+ 1)* + (Im(qiq;)/m)*1a} %] 2,
(4.19)
wheren =0, 1, 2,... andW_(0) are dyonium wave functions simplified Ry (r)
Y.ij,1,m(@, @), whereY,ij 1 m(6, ¢) are dyon harmonics (Pandeyal, 1990). Thus,
the Pauli wave function for spin up and spin down states are given by

Rt Yyij,m,l
[Y1(0)]p = W1, ml,ms=+1/2) = Rt Yuij,mi| 1) = 0 (4.20)

and
0
R Yaij,1,m

In the absence of spin—orbit interaction, both the wave functions corresponds to
the same energy. In order to determine the splitting due to spin—orbit interaction
we should choose a representation in whithis diagonal:

[Y_(O)lp = Yn1,mims=-1/2) = R Yuijmil 1) = [ } . 421

(P1)p = D1, j =1+1/2, mi)
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or

T+m 112
($1)p = ZII—H‘IJ(n,|,m|:mj—1/2,ms:+1/2)
[ —m; +1/2
+ 2ll—+1\lj(n,l,ml=mj+l/2,ms=7l/2)

I +m;+1/2
\/ZI—_I_]_RnIY;Lij,I,mj—l/Z

- (4.22)

| —mj +1/2
,/zjiﬂRmYuij,LmHl/z

Similarly, we can write ¢2)p = ¢(n,1, j=1-1/2,mj)-
Then the first order perturbation due to the spin—orbit interaction would be
given by

W = [ drg!(H)es
= Rea))/4m?e) [ de/rp' e (3@ e~ (Lo D
—(5® S)plp — (IM(gaf)*/4m°c?)
x [arri e le e - Cole - (o9l @29

or

W = (Re@ia})/4mPcA)[1o ® {j(j +1) — (1 + 1) — 3/4}]
x / dr(1/r3((0 £ m; +1/2)/@ + D} R Y mi— 1721

+{0 Fmj +1/2)/2 + DHRil Vi mj+ 1/21°]
+ (Im(gig7)?/4m*c?)[12 @ {j(j + 1) - 1(I + 1) — 3/4}]

x / dr(1/r(( £ m; +1/2)/@ + D} Rt Yo 17212

+{0 Fmj +1/2)/(2 + DHRal Vi t,mj+ 17211, (4.24)

where the upper and lower signs corresponds$ tel +1/2 andj =1 — 1/2,
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respectively. After integration we get

REGAD, (L) MOy o1 (L) o joi4l
amecz 2\ r3 amcz 2 \r4 =72
wo— ] Re@aq;) 1\  Im(qap)? 1
C | A 2O ONE) T e 2@
. 1
for j_|—§,
(4.25)
where
N o E 1 1
<r_3>_fo IRl = T =
1 ©1 L 3—5n3(1 + 1/2)a2
N1 dr = . (4.26
(i) = [} cormarcar S0 — 120 + 1720 + 328 20

The splitting of energy levels corresponding to quantum numbés W =
WO + wd
£ __ EnRe@aNL®
" 2m2e2ndl(l + 1)(2 + 1)a2
En Im(gia})?12 ® I[3 — 5n*(l + 1/2)ad] o i 1
miezns(2 — D@ + (@ + 3 J 2
N EnRe@ig))® (I +1)
" 2me2n3l(l + 1)(2 + 1)a2
EnIm(@iq)*L ® (I + 1)[3 - 5n°(l + 1/2)a] or i—l_ 2t
a mtc2ns(2l — 1)(2 + 1)(2 + 3)ad T2
(4.27)

whereE, is given by Eq. (4.19) and the Bohr radiagfor this system is given as

[m(e ) + 1
= 4.28
mRe@ ) (4.2

Equation (4.27) gives the splitting in the energy levels corresponding to quantum
numbemfor j =1 +1/2 andj =1 — 1/2, respectively.



1338 Purohit, Pandey, and Rajput

5. CONCLUSION

Equation (2.5) is Dirac’s equation for extended dyon moving in general-
ized electromagnetic field of another non-Abelian dyon in moduli space, which
on solving gives Pauli’s equation (2.12) for non-Abelian dyons. Equation (3.5) is
the relativistic Hamiltonian, for non-Abelian dyon in field of another non-
Abelian dyon in moduli space, different parts of which arise due to different
relativistic interactions. Hamiltonian (3.5) of this system has been shown in
terms of Higgs potential instead of scalar potential in abelian as well as in non-
Abelian gauge theories (Rajput and Pandey, 1998) due to moduli space approx-
imation. Equation (4.1) is the Schrodinger equation for a spinning non-Abelian
dyon in the field of another non-Abelian dyon in moduli space, in this equa-
tion spin has been introduced in an ad hoc manner. Equation (4.19) described
the energy eigenvalue of this system and Eq. (4.20) and (4.21) describe the
Pauli wave function associated with spinning non-Abelian dyons in moduli
space. Equation (4.27) is the splitting of energy levels corresponding to quan-
tum numbem and Eq. (4.28) is Bohr radius for non-Abelian dyonium in moduli
space.
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